8 de janeiro de 2024

(Mackenzie 2024) - QUESTÃO

Em um trem com 5 vagões há 403 passageiros. Se as quantidades de passageiros nos vagões formam uma progressão geométrica de razão 2, então há no vagão mais cheio 
a) 208 passageiros 
b) 196 passageiros 
c) 182 passageiros 
d) 172 passageiros 
e) 138 passageiros



Seja x a quantidade de passageiros no vagão menos cheio. Escrevendo os termos da PG em função de x, temos: (x; 2x; 4x; 8x; 16x) 
Pela soma dos termos, temos:
x + 2x + 4x + 8x + 16x = 403 ⇔ 31x = 403 ⇔ x = 13

O vagão mais cheio terá 16 . 13 = 208 passageiros.

3 comentários:

  1. de onde krai saiu esse 31

    ResponderExcluir
    Respostas
    1. dá fórmula da soma dos termos da PG FINITA: Sn = a1 * (q^n - 1)/ q - 1,
      403 = a1 * ( 2^5 - 1)/2-1----------> 403 = a1 * (32-1)/1-----------> 403 = a1 * 31 ---------->
      403/31 = a1 --------> a1 = 13, ai como ele quer o maior termo da PG, então: a5 = 13 * 2^5
      -----> a5 = 208.

      #ESA 2025😎🏅🪖

      Excluir

SUGESTÃO DE QUESTÕES COMENTADAS PARA O CONCURSO DE ADMISSÃO ESA