➥ Pesquise o ASSUNTO aqui

A RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA NÃO PERDERÃO A QUALIDADE QUANDO ACESSADAS NO COMPUTADOR/NOTEBOOK.
Fazer questões para concurso é uma das estratégias mais eficazes para quem quer realmente aprender e passar. Eis os principais motivos: ✅ 1. Você entende como a banca cobra o conteúdo. Cada banca tem um estilo. Fazendo questões, você aprende: nível de dificuldade; pegadinhas mais comuns; forma de interpretar o enunciado. ✅ 2. Melhora a fixação do conteúdo. Responder questões obriga o cérebro a resgatar informações, o que fortalece a memória muito mais do que apenas ler ou assistir aula. ✅ 3. Identifica suas falhas. Ao errar uma questão, você descobre exatamente: quais assuntos não domina; o que precisa revisar; onde está perdendo pontos. Isso deixa o estudo mais estratégico. ✅ 4. Aumenta a velocidade e a precisão. Concursos têm tempo limitado. Treinar com questões te ajuda a: responder mais rápido; ganhar confiança; evitar travar na prova. ✅ 5. Adapta o seu cérebro ao “modo prova”. Quanto mais familiaridade você tem com o formato de prova, menos ansiedade e mais foco você terá no dia oficial. ✅ 6. Serve como revisão prática. Cada bateria de questões revisa automaticamente tudo o que você já estudou, reforçando o aprendizado.

19 de fevereiro de 2021

(ESPCEX) - QUESTÃO

A partir de um cubo de aresta 1, inscreve-se uma esfera; nessa esfera inscreve-se um novo cubo e neste, uma nova esfera. Repetindo essa operação indefinidamente, a soma das áreas totais desses cubos é igual a
Ⓐ 7. 
Ⓑ 8. 
Ⓒ 9. 
Ⓓ 10. 
Ⓔ 11.


Conforme a questão, temos uma PG formada por infinitas áreas de cubos, onde o primeiro deles tem aresta (a) igual a 1.

A fórmula da área total do cubo é:  Acubo = 6 x a²  ⇒ Acubo = 6 x 1² ⇒ Acubo = 1

Como o primeiro cubo tem área total igual a 6, então este é o termo a1 da PG infinita.

O segundo termo será a área do segundo cubo que está dentro da primeira esfera. Temos então: 

Observação: Quando inscrevemos uma esfera dentro de um cubo, essa esfera terá diâmetro igual à aresta do cubo, ou seja, o diâmetro da primeira esfera vale 1.

Ao inscrever o segundo cubo dentro dessa primeira esfera, e para este caso, temos que o diâmetro da primeira esfera será igual a diagonal do segundo cubo, ou seja dcubo (2) = 1.

A diagonal do segundo cubo é dadapor dcubo (2) = a√3 ⇒ 1 = a√3 ⇒ a = √3/3   

Logo a área do segundo cubo é dada por Acubo(2) =  6.a² = 6.(√3/3)² ⇒ Acubo(2) = 2 (este é o termo a2 da PG infinita)

Temos então a PG = (6, 2, ...) de razão q = 1/3

Aplicando a fórmula da soma dos termos de uma PG infinita, temos:

S = a1/(1  q) ⇒ S = 6/(1 – 1/3) ⇒ S = 6/(2/3) ⇒ S = 6.3/2 ⇒ S = 18/2
S = 9

Nenhum comentário:

Postar um comentário