➥ Pesquise o ASSUNTO aqui

A RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA NÃO PERDERÃO A QUALIDADE QUANDO ACESSADAS NO COMPUTADOR/NOTEBOOK.
Fazer questões para concurso é uma das estratégias mais eficazes para quem quer realmente aprender e passar. Eis os principais motivos: ✅ 1. Você entende como a banca cobra o conteúdo. Cada banca tem um estilo. Fazendo questões, você aprende: nível de dificuldade; pegadinhas mais comuns; forma de interpretar o enunciado. ✅ 2. Melhora a fixação do conteúdo. Responder questões obriga o cérebro a resgatar informações, o que fortalece a memória muito mais do que apenas ler ou assistir aula. ✅ 3. Identifica suas falhas. Ao errar uma questão, você descobre exatamente: quais assuntos não domina; o que precisa revisar; onde está perdendo pontos. Isso deixa o estudo mais estratégico. ✅ 4. Aumenta a velocidade e a precisão. Concursos têm tempo limitado. Treinar com questões te ajuda a: responder mais rápido; ganhar confiança; evitar travar na prova. ✅ 5. Adapta o seu cérebro ao “modo prova”. Quanto mais familiaridade você tem com o formato de prova, menos ansiedade e mais foco você terá no dia oficial. ✅ 6. Serve como revisão prática. Cada bateria de questões revisa automaticamente tudo o que você já estudou, reforçando o aprendizado.

14 de junho de 2018

(ESA) - QUESTÃO

A soma dos inversos das raízes da equação do 2º grau, em "x", (m + 1)x² - 2mx + (m - 1) = 0, m ≠ - 1, é igual a 3. Assim, o valor de m² é igual a:

a) 9
b) 0
c) 16
d) 1
e) 4



Se x' e x" são as raízes da equação do 2º grau ax² + bx + c = 0, então a soma (S) e o produto (P) dessas raízes são:

S = x' + x" = - b/a e P = x'.x" = c/a

Dados do problema: 

a = m + 1
b = - 2m
c = m -1

1/x' + 1/x" = 3 ⇒ (x" + x')/x'.x" = 3 ⇒  x" + x' = 3. x'.x"

x" + x' = - (-2m)/m + 1 = 2m/m + 1
x". x' = m - 1/m + 1

Assim, x" + x' = 3. x'.x" ⇒  2m/m + 1 = 3. (m - 1/m + 1)

2m/m + 1 = 3m-3/m + 1

2m = 3m - 3
3m - 2m = 3

m = 3

m² = 3² = 9

Resposta: A

Um comentário: